Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
J Neurol ; 270(7): 3315-3328, 2023 Jul.
Article in English | MEDLINE | ID: covidwho-2312113

ABSTRACT

BACKGROUND AND AIMS: To investigate the prognostic value of blood neurofilament light chain protein (NfL) levels in the acute phase of coronavirus disease 2019 (COVID-19). METHODS: We conducted an individual participant data (IPD) meta-analysis after screening on MEDLINE and Scopus to May 23rd 2022. We included studies with hospitalized adult COVID-19 patients without major COVID-19-associated central nervous system (CNS) manifestations and with a measurement of blood NfL in the acute phase as well as data regarding at least one clinical outcome including intensive care unit (ICU) admission, need of mechanical ventilation (MV) and death. We derived the age-adjusted measures NfL Z scores and conducted mixed-effects modelling to test associations between NfL Z scores and other variables, encompassing clinical outcomes. Summary receiver operating characteristic curves (SROCs) were used to calculate the area under the curve (AUC) for blood NfL. RESULTS: We identified 382 records, of which 7 studies were included with a total of 669 hospitalized COVID-19 cases (mean age 66.2 ± 15.0 years, 68.1% males). Median NfL Z score at admission was elevated compared to the age-corrected reference population (2.37, IQR: 1.13-3.06, referring to 99th percentile in healthy controls). NfL Z scores were significantly associated with disease duration and severity. Higher NfL Z scores were associated with a higher likelihood of ICU admission, need of MV, and death. SROCs revealed AUCs of 0.74, 0.80 and 0.71 for mortality, need of MV and ICU admission, respectively. CONCLUSIONS: Blood NfL levels were elevated in the acute phase of COVID-19 patients without major CNS manifestations and associated with clinical severity and poor outcome. The marker might ameliorate the performance of prognostic multivariable algorithms in COVID-19.


Subject(s)
COVID-19 , Adult , Male , Humans , Middle Aged , Aged , Aged, 80 and over , Female , Prognosis , Biomarkers , Intermediate Filaments , Central Nervous System , Neurofilament Proteins
3.
Crit Care ; 27(1): 69, 2023 02 23.
Article in English | MEDLINE | ID: covidwho-2284552

ABSTRACT

BACKGROUND: Gut microbiota alterations have been reported in hospitalized COVID-19 patients, with reduced alpha diversity and altered microbiota composition related to respiratory failure. However, data regarding gut microbiota and mortality are scarce. METHODS: Rectal swabs for gut microbiota analyses were collected within 48 h after hospital admission (baseline; n = 123) and three-month post-admission (n = 50) in a subset of patients included in the Norwegian SARS-CoV2 cohort study. Samples were analysed by sequencing the 16S rRNA gene. Gut microbiota diversity and composition at baseline were assessed in relation to need for intensive care unit (ICU) admission during hospitalization. The primary objective was to investigate whether the ICU-related gut microbiota was associated with 60-day mortality. RESULTS: Gut microbiota diversity (Shannon index) at baseline was lower in COVID-19 patients requiring ICU admission during hospitalization than in those managed in general wards. A dysbiosis index representing a balance of enriched and reduced taxa in ICU compared with ward patients, including decreased abundance of butyrate-producing microbes and enrichment of a partly oral bacterial flora, was associated with need of ICU admission independent of antibiotic use, dexamethasone use, chronic pulmonary disease, PO2/FiO2 ratio, C-reactive protein, neutrophil counts or creatinine levels (adjusted p < 0.001). The ICU-related dysbiosis index at baseline correlated with systemic inflammation and was associated with 60-day mortality in univariate analyses (Hazard ratio 3.70 [2.00-8.6], p < 0.001), as well as after separate adjustment for covariates. At the three-month follow-up, the dysbiosis index remained elevated in ICU patients compared with ward patients (adjusted p = 0.007). CONCLUSIONS: Although our data should be regarded as exploratory due to low number of clinical end points, they suggest that gut microbiota alterations during hospitalization could be related to poor prognosis after severe COVID-19. Larger studies of gut involvement during COVID-19 in relation to long-term clinical outcome are warranted. Trial registration NCT04381819 . Retrospectively registered May 11, 2020.


Subject(s)
COVID-19 , Gastrointestinal Microbiome , Humans , Cohort Studies , Dysbiosis/microbiology , RNA, Ribosomal, 16S/genetics , RNA, Viral , SARS-CoV-2/genetics , Hospitalization
4.
J Inflamm Res ; 15: 6629-6644, 2022.
Article in English | MEDLINE | ID: covidwho-2224591

ABSTRACT

Purpose: Reactive oxygen species (ROS) are an important part of the inflammatory response during infection but can also promote DNA damage. Due to the sustained inflammation in severe Covid-19, we hypothesized that hospitalized Covid-19 patients would be characterized by increased levels of oxidative DNA damage and dysregulation of the DNA repair machinery. Patients and Methods: Levels of the oxidative DNA lesion 8-oxoG and levels of base excision repair (BER) proteins were measured in peripheral blood mononuclear cells (PBMC) from patients (8-oxoG, n = 22; BER, n = 17) and healthy controls (n = 10) (Cohort 1). Gene expression related to DNA repair was investigated in two independent cohorts of hospitalized Covid-19 patients (Cohort 1; 15 patents and 5 controls, Cohort 2; 15 patients and 6 controls), and by publicly available datasets. Results: Patients and healthy controls showed comparable amounts of oxidative DNA damage as assessed by 8-oxoG while levels of several BER proteins were increased in Covid-19 patients, indicating enhanced DNA repair in acute Covid-19 disease. Furthermore, gene expression analysis demonstrated regulation of genes involved in BER and double strand break repair (DSBR) in PBMC of Covid-19 patients and expression level of several DSBR genes correlated with the degree of respiratory failure. Finally, by re-analyzing publicly available data, we found that the pathway Hallmark DNA repair was significantly more regulated in circulating immune cells during Covid-19 compared to influenza virus infection, bacterial pneumonia or acute respiratory infection due to seasonal coronavirus. Conclusion: Although beneficial by protecting against DNA damage, long-term activation of the DNA repair machinery could also contribute to persistent inflammation, potentially through mechanisms such as the induction of cellular senescence. However, further studies that also include measurements of additional markers of DNA damage are required to determine the role and precise molecular mechanisms for DNA repair in SARS-CoV-2 infection.

5.
Crit Care ; 27(1): 9, 2023 01 10.
Article in English | MEDLINE | ID: covidwho-2196397

ABSTRACT

BACKGROUND: Baricitinib has shown efficacy in hospitalized patients with COVID-19, but no placebo-controlled trials have focused specifically on severe/critical COVID, including vaccinated participants. METHODS: Bari-SolidAct is a phase-3, multicentre, randomised, double-blind, placebo-controlled trial, enrolling participants from June 3, 2021 to March 7, 2022, stopped prematurely for external evidence. Patients with severe/critical COVID-19 were randomised to Baricitinib 4 mg once daily or placebo, added to standard of care. The primary endpoint was all-cause mortality within 60 days. Participants were remotely followed to day 90 for safety and patient related outcome measures. RESULTS: Two hundred ninety-nine patients were screened, 284 randomised, and 275 received study drug or placebo and were included in the modified intent-to-treat analyses (139 receiving baricitinib and 136 placebo). Median age was 60 (IQR 49-69) years, 77% were male and 35% had received at least one dose of SARS-CoV2 vaccine. There were 21 deaths at day 60 in each group, 15.1% in the baricitinib group and 15.4% in the placebo group (adjusted absolute difference and 95% CI - 0.1% [- 8·3 to 8·0]). In sensitivity analysis censoring observations after drug discontinuation or rescue therapy (tocilizumab/increased steroid dose), proportions of death were 5.8% versus 8.8% (- 3.2% [- 9.0 to 2.7]), respectively. There were 148 serious adverse events in 46 participants (33.1%) receiving baricitinib and 155 in 51 participants (37.5%) receiving placebo. In subgroup analyses, there was a potential interaction between vaccination status and treatment allocation on 60-day mortality. In a subsequent post hoc analysis there was a significant interaction between vaccination status and treatment allocation on the occurrence of serious adverse events, with more respiratory complications and severe infections in vaccinated participants treated with baricitinib. Vaccinated participants were on average 11 years older, with more comorbidities. CONCLUSION: This clinical trial was prematurely stopped for external evidence and therefore underpowered to conclude on a potential survival benefit of baricitinib in severe/critical COVID-19. We observed a possible safety signal in vaccinated participants, who were older with more comorbidities. Although based on a post-hoc analysis, these findings warrant further investigation in other trials and real-world studies. Trial registration Bari-SolidAct is registered at NCT04891133 (registered May 18, 2021) and EUClinicalTrials.eu ( 2022-500385-99-00 ).


Subject(s)
COVID-19 , Humans , Adult , Male , Middle Aged , Female , SARS-CoV-2 , RNA, Viral , COVID-19 Drug Treatment , Double-Blind Method
6.
BMC Pulm Med ; 22(1): 379, 2022 Oct 14.
Article in English | MEDLINE | ID: covidwho-2079411

ABSTRACT

BACKGROUND: Community-acquired pneumonia (CAP) is the most frequent infection diagnosis in hospitals. Antimicrobial therapy for CAP is depicted in clinical practice guidelines, but adherence data and effect of antibiotic stewardship measures are lacking. METHODS: A dedicated antibiotic team pointed out CAP as a potential target for antimicrobial stewardship (AMS) measures at a 1.000-bed, tertiary care, teaching university hospital in Norway from March until May for the years 2016 throughout 2021. The aim of the AMS program was to increase diagnostic and antimicrobial therapy adherence to national clinical practice guideline recommendations through multiple and continuous AMS efforts. Descriptive statistics were retrospectively used to delineate antimicrobial therapy for CAP. The primary outcomes were proportions that received narrow-spectrum beta-lactams, and broad-spectrum antimicrobial therapy. RESULTS: 1.112 CAP episodes were identified. The annual proportion that received narrow-spectrum beta-lactams increased from 56.1 to 74.4% (p = 0.045). Correspondingly, the annual proportion that received broad-spectrum antimicrobial therapy decreased from 34.1 to 17.1% (p = 0.002). Trends were affected by the coronavirus pandemic. Mortality and 30-day readmission rates remained unchanged. De-escalation strategies were frequently unutilized, and overall therapy duration exceeded clinical practice guideline recommendations substantially. Microbiologically confirmed CAP episodes increased from 33.7 to 56.2% during the study period. CONCLUSION: CAP is a suitable model condition that is sensitive to AMS measures. A continuous focus on improved microbiological diagnostics and antimicrobial therapy initiation is efficient in increasing adherence to guideline recommendations. There is an unmet need for better antimicrobial de-escalation strategies.


Subject(s)
Anti-Infective Agents , Community-Acquired Infections , Coronavirus , Pneumonia , Anti-Bacterial Agents/therapeutic use , Anti-Infective Agents/therapeutic use , Community-Acquired Infections/drug therapy , Humans , Pandemics , Pneumonia/drug therapy , Retrospective Studies , beta-Lactams/therapeutic use
8.
BMC Infect Dis ; 22(1): 763, 2022 Sep 30.
Article in English | MEDLINE | ID: covidwho-2053867

ABSTRACT

BACKGROUND: The COVID-19 pandemic was met with strict containment measures. We hypothesized that societal infection control measures would impact the number of hospital admissions for respiratory tract infections, as well as, the spectrum of pathogens detected in patients with suspected community acquired pneumonia (CAP). METHODS: This study is based on aggregated surveillance data from electronic health records of patients admitted to the hospitals in Bergen Hospital Trust from January 2017 through June 2021, as well as, two prospective studies of patients with suspected CAP conducted prior to and during the COVID-19 pandemic (pre-COVID cohort versus COVID cohort, respectively). In the prospective cohorts, microbiological detections were ascertained by comprehensive PCR-testing in lower respiratory tract specimens. Mann-Whitney's U test was used to analyse continuous variables. Fisher's exact test was used for analysing categorical data. The number of admissions before and during the outbreak of SARS-CoV-2 was compared using two-sample t-tests on logarithmic transformed values. RESULTS: Admissions for respiratory tract infections declined after the outbreak of SARS-CoV-2 (p < 0.001). The pre-COVID and the COVID cohorts comprised 96 and 80 patients, respectively. The proportion of viruses detected in the COVID cohort was significantly lower compared with the pre-COVID cohort [21% vs 36%, difference of 14%, 95% CI 4% to 26%; p = 0.012], and the proportion of bacterial- and viral co-detections was less than half in the COVID cohort compared with the pre-COVID cohort (19% vs 45%, difference of 26%, 95% CI 13% to 41%; p < 0.001). The proportion of bacteria detected was similar (p = 0.162), however, a difference in the bacterial spectrum was observed in the two cohorts. Haemophilus influenzae was the most frequent bacterial detection in both cohorts, followed by Streptococcus pneumoniae in the pre-COVID and Staphylococcus aureus in the COVID cohort. CONCLUSION: During the first year of the COVID-19 pandemic, the number of admissions with pneumonia and the microbiological detections in patients with suspected CAP, differed from the preceding year. This suggests that infection control measures related to COVID-19 restrictions have an overall and specific impact on respiratory tract infections, beyond reducing the spread of SARS-CoV-2.


Subject(s)
COVID-19 , Community-Acquired Infections , Pneumonia , Respiratory Tract Infections , COVID-19/epidemiology , Community-Acquired Infections/epidemiology , Humans , Pandemics , Pneumonia/epidemiology , Prospective Studies , Respiratory Tract Infections/epidemiology , SARS-CoV-2
9.
J Intern Med ; 292(5): 816-828, 2022 Nov.
Article in English | MEDLINE | ID: covidwho-2001700

ABSTRACT

BACKGROUND: T-cell activation is associated with an adverse outcome in COVID-19, but whether T-cell activation and exhaustion relate to persistent respiratory dysfunction and death is unknown. OBJECTIVES: To investigate whether T-cell activation and exhaustion persist and are associated with prolonged respiratory dysfunction and death after hospitalization for COVID-19. METHODS: Plasma and serum from two Norwegian cohorts of hospitalized patients with COVID-19 (n = 414) were analyzed for soluble (s) markers of T-cell activation (sCD25) and exhaustion (sTim-3) during hospitalization and follow-up. RESULTS: Both markers were strongly associated with acute respiratory failure, but only sTim-3 was independently associated with 60-day mortality. Levels of sTim-3 remained elevated 3 and 12 months after hospitalization and were associated with pulmonary radiological pathology after 3 months. CONCLUSION: Our findings suggest prolonged T-cell exhaustion is an important immunological sequela, potentially related to long-term outcomes after severe COVID-19.


Subject(s)
COVID-19 , Cohort Studies , Humans , Lymphocyte Activation , SARS-CoV-2 , T-Lymphocytes
10.
J Infect Dis ; 2022 Jul 25.
Article in English | MEDLINE | ID: covidwho-1961059

ABSTRACT

BACKGROUND: Immune dysregulation is a major factor in the development of severe Covid-19. The homeostatic chemokines CCL19 and CCL21 have been implicated as mediators of tissue inflammation, but data on their regulation in SARS-CoV-2 infection is limited. We thus investigated the levels of these chemokines in Covid-19 patients. METHODS: Serial blood samples were obtained from patients hospitalized with Covid-19 (n = 414). Circulating CCL19 and CCL21 levels during hospitalization and three-month follow-up were analyzed. In vitro assays and analysis of RNAseq data from public repositories were performed to further explore possible regulatory mechanisms. RESULTS: A consistent increase in circulating levels of CCL19 and CCL21 was observed, with high levels correlating with disease severity measures, including respiratory failure, need for intensive care, and 60-day all-cause mortality. High levels of CCL21 at admission were associated with persisting impairment of pulmonary function at the three-month follow-up. CONCLUSIONS: Our findings highlight CCL19 and CCL21 as markers of immune dysregulation in Covid-19. This may reflect aberrant regulation triggered by tissue inflammation, as observed in other chronic inflammatory and autoimmune conditions. Determination of the source and regulation of these chemokines and their effects on lung tissue is warranted to further clarify their role in Covid-19.

11.
J Infect ; 85(1): 57-63, 2022 07.
Article in English | MEDLINE | ID: covidwho-1851543

ABSTRACT

OBJECTIVES: To determine the incidence and characteristics of superinfections in mechanically ventilated COVID-19 patients, and the impact of dexamethasone as standard therapy. METHODS: This multicentre, observational, retrospective study included patients ≥ 18 years admitted from March 1st 2020 to January 31st 2021 with COVID-19 infection who received mechanical ventilation. Patient characteristics, clinical characteristics, therapy and survival were examined. RESULTS: 155/156 patients (115 men, mean age 62 years, range 26-84 years) were included. 67 patients (43%) had 90 superinfections, pneumonia dominated (78%). Superinfections were associated with receiving dexamethasone (66% vs 32%, p<0.0001), autoimmune disease (18% vs 5.7%, p<0.016) and with longer ICU stays (26 vs 17 days, p<0,001). Invasive fungal infections were reported exclusively in dexamethasone-treated patients [8/67 (12%) vs 0/88 (0%), p<0.0001]. Unadjusted 90-day survival did not differ between patients with or without superinfections (64% vs 73%, p=0.25), but was lower in patients receiving dexamethasone versus not (58% vs 78%, p=0.007). In multiple regression analysis, superinfection was associated with dexamethasone use [OR 3.7 (1.80-7.61), p<0.001], pre-existing autoimmune disease [OR 3.82 (1.13-12.9), p=0.031] and length of ICU stay [OR 1.05 p<0.001]. CONCLUSIONS: In critically ill COVID-19 patients, dexamethasone as standard of care was strongly and independently associated with superinfections.


Subject(s)
Autoimmune Diseases , COVID-19 , Superinfection , Adrenal Cortex Hormones/adverse effects , Adult , Aged , Aged, 80 and over , Autoimmune Diseases/etiology , Dexamethasone/adverse effects , Humans , Male , Middle Aged , Respiration, Artificial , Retrospective Studies , SARS-CoV-2 , Superinfection/etiology
12.
Ann Intern Med ; 174(9): 1261-1269, 2021 09.
Article in English | MEDLINE | ID: covidwho-1547664

ABSTRACT

BACKGROUND: New treatment modalities are urgently needed for patients with COVID-19. The World Health Organization (WHO) Solidarity trial showed no effect of remdesivir or hydroxychloroquine (HCQ) on mortality, but the antiviral effects of these drugs are not known. OBJECTIVE: To evaluate the effects of remdesivir and HCQ on all-cause, in-hospital mortality; the degree of respiratory failure and inflammation; and viral clearance in the oropharynx. DESIGN: NOR-Solidarity is an independent, add-on, randomized controlled trial to the WHO Solidarity trial that included biobanking and 3 months of clinical follow-up (ClinicalTrials.gov: NCT04321616). SETTING: 23 hospitals in Norway. PATIENTS: Eligible patients were adults hospitalized with confirmed SARS-CoV-2 infection. INTERVENTION: Between 28 March and 4 October 2020, a total of 185 patients were randomly assigned and 181 were included in the full analysis set. Patients received remdesivir (n = 42), HCQ (n = 52), or standard of care (SoC) (n = 87). MEASUREMENTS: In addition to the primary end point of WHO Solidarity, study-specific outcomes were viral clearance in oropharyngeal specimens, the degree of respiratory failure, and inflammatory variables. RESULTS: No significant differences were seen between treatment groups in mortality during hospitalization. There was a marked decrease in SARS-CoV-2 load in the oropharynx during the first week overall, with similar decreases and 10-day viral loads among the remdesivir, HCQ, and SoC groups. Remdesivir and HCQ did not affect the degree of respiratory failure or inflammatory variables in plasma or serum. The lack of antiviral effect was not associated with symptom duration, level of viral load, degree of inflammation, or presence of antibodies against SARS-CoV-2 at hospital admittance. LIMITATION: The trial had no placebo group. CONCLUSION: Neither remdesivir nor HCQ affected viral clearance in hospitalized patients with COVID-19. PRIMARY FUNDING SOURCE: National Clinical Therapy Research in the Specialist Health Services, Norway.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Antiviral Agents/therapeutic use , COVID-19 Drug Treatment , COVID-19/virology , Hydroxychloroquine/therapeutic use , Viral Load/drug effects , Adenosine Monophosphate/therapeutic use , Alanine/therapeutic use , Antibodies, Viral/blood , Biomarkers/blood , COVID-19/complications , COVID-19/mortality , Cause of Death , Female , Hospital Mortality , Humans , Inflammation/virology , Male , Middle Aged , Norway/epidemiology , Oropharynx/virology , Respiratory Insufficiency/virology , SARS-CoV-2/immunology , Severity of Illness Index , Standard of Care , Treatment Outcome
14.
Tidsskr Nor Laegeforen ; 141(3)2021 02 23.
Article in Norwegian | MEDLINE | ID: covidwho-1222252
15.
J Neurol ; 268(10): 3574-3583, 2021 Oct.
Article in English | MEDLINE | ID: covidwho-1141418

ABSTRACT

OBJECTIVE: To test the hypotheses that blood biomarkers for nervous system injury, serum concentrations of neurofilament light chain protein (NfL) and glial fibrillary acidic protein (GFAp) can serve as biomarkers for disease severity in COVID-19 patients. METHODS: Forty-seven inpatients with confirmed COVID-19 had blood samples drawn on admission for assessing serum biomarkers of CNS injury by Single molecule array (Simoa), NfL and GFAp. Concentrations of NfL and GFAp were analyzed in relation to symptoms, clinical signs, inflammatory biomarkers and clinical outcomes. We used multivariate linear models to test for differences in biomarker concentrations in the subgroups, accounting for confounding effects. RESULTS: In total, 21% (n = 10) of the patients were admitted to an intensive care unit, and the overall mortality rate was 13% (n = 6). Non-survivors had higher serum concentrations of NfL (p < 0.001) upon admission than patients who were discharged alive both in adjusted analyses (p = 2.6 × 10-7) and unadjusted analyses (p = 0.001). The concentrations of NfL in non-survivors increased over repeated measurements; whereas, the concentrations in survivors were stable. The GFAp concentration was also significantly higher in non-survivors than survivors (p = 0.02). CONCLUSION: Increased concentrations of NfL and GFAp in COVID-19 patients on admission may indicate increased mortality risk. Measurement of blood biomarkers for nervous system injury can be useful to detect and monitor CNS injury in COVID-19.


Subject(s)
COVID-19 , Biomarkers , Glial Fibrillary Acidic Protein , Humans , Intermediate Filaments , Neurofilament Proteins , Prognosis , SARS-CoV-2
16.
Sci Rep ; 10(1): 21697, 2020 12 10.
Article in English | MEDLINE | ID: covidwho-1059940

ABSTRACT

In SARS-CoV-2 infection there is an urgent need to identify patients that will progress to severe COVID-19 and may benefit from targeted treatment. In this study we analyzed plasma cytokines in COVID-19 patients and investigated their association with respiratory failure (RF) and treatment in Intensive Care Unit (ICU). Hospitalized patients (n = 34) with confirmed COVID-19 were recruited into a prospective cohort study. Clinical data and blood samples were collected at inclusion and after 2-5 and 7-10 days. RF was defined as PaO2/FiO2 ratio (P/F) < 40 kPa. Plasma cytokines were analyzed by a Human Cytokine 27-plex assay. COVID-19 patients with RF and/or treated in ICU showed overall increased systemic cytokine levels. Plasma IL-6, IL-8, G-CSF, MCP-1, MIP-1α levels were negatively correlated with P/F, whereas combinations of IL-6, IP-10, IL-1ra and MCP-1 showed the best association with RF in ROC analysis (AUC 0.79-0.80, p < 0.05). During hospitalization the decline was most significant for IP-10 (p < 0.001). Elevated levels of pro-inflammatory cytokines were present in patients with severe COVID-19. IL-6 and MCP-1 were inversely correlated with P/F with the largest AUC in ROC analyses and should be further explored as biomarkers to identify patients at risk for severe RF and as targets for improved treatment strategies.


Subject(s)
COVID-19/blood , Chemokine CCL2/blood , Interleukin-6/blood , Respiratory Insufficiency/blood , SARS-CoV-2/metabolism , Adult , Aged , Aged, 80 and over , Biomarkers/blood , COVID-19/complications , Female , Humans , Male , Middle Aged , Prospective Studies , Respiratory Insufficiency/etiology , Severity of Illness Index
17.
Proc Natl Acad Sci U S A ; 117(40): 25018-25025, 2020 10 06.
Article in English | MEDLINE | ID: covidwho-780138

ABSTRACT

Respiratory failure in the acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic is hypothesized to be driven by an overreacting innate immune response, where the complement system is a key player. In this prospective cohort study of 39 hospitalized coronavirus disease COVID-19 patients, we describe systemic complement activation and its association with development of respiratory failure. Clinical data and biological samples were obtained at admission, days 3 to 5, and days 7 to 10. Respiratory failure was defined as PO2/FiO2 ratio of ≤40 kPa. Complement activation products covering the classical/lectin (C4d), alternative (C3bBbP) and common pathway (C3bc, C5a, and sC5b-9), the lectin pathway recognition molecule MBL, and antibody serology were analyzed by enzyme-immunoassays; viral load by PCR. Controls comprised healthy blood donors. Consistently increased systemic complement activation was observed in the majority of COVID-19 patients during hospital stay. At admission, sC5b-9 and C4d were significantly higher in patients with than without respiratory failure (P = 0.008 and P = 0.034). Logistic regression showed increasing odds of respiratory failure with sC5b-9 (odds ratio 31.9, 95% CI 1.4 to 746, P = 0.03) and need for oxygen therapy with C4d (11.7, 1.1 to 130, P = 0.045). Admission sC5b-9 and C4d correlated significantly to ferritin (r = 0.64, P < 0.001; r = 0.69, P < 0.001). C4d, sC5b-9, and C5a correlated with antiviral antibodies, but not with viral load. Systemic complement activation is associated with respiratory failure in COVID-19 patients and provides a rationale for investigating complement inhibitors in future clinical trials.


Subject(s)
Betacoronavirus/immunology , Complement Activation , Coronavirus Infections/immunology , Pneumonia, Viral/immunology , Respiratory Insufficiency/immunology , Aged , Biomarkers/blood , COVID-19 , Case-Control Studies , Coronavirus Infections/blood , Coronavirus Infections/complications , Female , Host-Pathogen Interactions/immunology , Humans , Male , Mannose-Binding Lectin/blood , Middle Aged , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/complications , Respiratory Insufficiency/virology , SARS-CoV-2 , Viral Load
18.
J Allergy Clin Immunol ; 147(1): 92-98, 2021 01.
Article in English | MEDLINE | ID: covidwho-779084

ABSTRACT

BACKGROUND: The pathogenesis of coronavirus disease 2019 (COVID-19) is still incompletely understood, but it seems to involve immune activation and immune dysregulation. OBJECTIVE: We examined the parameters of activation of different leukocyte subsets in COVID-19-infected patients in relation to disease severity. METHODS: We analyzed plasma levels of myeloperoxidase (a marker of neutrophil activation), soluble (s) CD25 (sCD25) and soluble T-cell immunoglobulin mucin domain-3 (sTIM-3) (markers of T-cell activation and exhaustion), and sCD14 and sCD163 (markers of monocyte/macrophage activation) in 39 COVID-19-infected patients at hospital admission and 2 additional times during the first 10 days in relation to their need for intensive care unit (ICU) treatment. RESULTS: Our major findings were as follows: (1) severe clinical outcome (ICU treatment) was associated with high plasma levels of sTIM-3 and myeloperoxidase, suggesting activated and potentially exhausted T cells and activated neutrophils, respectively; (2) in contrast, sCD14 and sCD163 showed no association with need for ICU treatment; and (3) levels of sCD25, sTIM-3, and myeloperoxidase were inversely correlated with degree of respiratory failure, as assessed by the ratio of Pao2 to fraction of inspired oxygen, and were positively correlated with the cardiac marker N-terminal pro-B-type natriuretic peptide. CONCLUSION: Our findings suggest that neutrophil activation and, in particular, activated T cells may play an important role in the pathogenesis of COVID-19 infection, suggesting that T-cell-targeted treatment options and downregulation of neutrophil activation could be of importance in this disorder.


Subject(s)
COVID-19/blood , Hepatitis A Virus Cellular Receptor 2/blood , SARS-CoV-2/metabolism , Aged , Antigens, CD/blood , Antigens, Differentiation, Myelomonocytic/blood , Female , Humans , Interleukin-2 Receptor alpha Subunit/blood , Lipopolysaccharide Receptors/blood , Lymphocyte Activation , Male , Middle Aged , Receptors, Cell Surface/blood , Severity of Illness Index , T-Lymphocytes/metabolism , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL